Step of Proof: absval_eq
12,41
postcript
pdf
Inference at
*
1
1
I
of proof for Lemma
absval
eq
:
1.
x
:
2.
y
:
(if 0
z
x
then
x
else -
x
fi = if 0
z
y
then
y
else -
y
fi )
x
=
y
latex
by
InteriorProof
((((((BoolCasesOnCExp 0
z
x
)
CollapseTHENM (BoolCasesOnCExp 0
z
y
))
)
CollapseTHENM (Bool
CollapseTHENM (AbReduce 0))
)
CollapseTHENA ((Auto_aux (first_nat 1:n
CollapseTHENA ((Au
) ((first_nat 1:n),(first_nat 3:n)) (first_tok :t) inil_term)))
latex
C
1
:
C1:
3. 0
x
C1:
4. 0
y
C1:
(
x
=
y
)
x
=
y
C
2
:
C2:
3. 0
x
C2:
4.
y
< 0
C2:
(
x
= (-
y
))
x
=
y
C
3
:
C3:
3.
x
< 0
C3:
4. 0
y
C3:
((-
x
) =
y
)
x
=
y
C
4
:
C4:
3.
x
< 0
C4:
4.
y
< 0
C4:
((-
x
) = (-
y
))
x
=
y
C
.
Definitions
T
,
P
Q
,
P
&
Q
,
P
Q
,
x
:
A
.
B
(
x
)
,
P
Q
,
True
,
ff
,
if
b
then
t
else
f
fi
,
,
tt
,
t
T
,
Unit
,
,
Lemmas
true
wf
,
squash
wf
,
assert
of
lt
int
,
bnot
of
le
int
,
eqff
to
assert
,
assert
of
le
int
,
eqtt
to
assert
,
iff
transitivity
,
bnot
wf
,
lt
int
wf
,
le
wf
,
assert
wf
,
bool
wf
,
le
int
wf
origin